If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+22x+47=0
a = 2; b = 22; c = +47;
Δ = b2-4ac
Δ = 222-4·2·47
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6\sqrt{3}}{2*2}=\frac{-22-6\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6\sqrt{3}}{2*2}=\frac{-22+6\sqrt{3}}{4} $
| a/15=-9 | | 6x^2+10x+18x+30=0 | | 1.6^x=6 | | 3(2y+2)-2(2y+5)=-2 | | 7=11u-4u | | 3(x+8)+2(5x+4)=6 | | 4x+35=80 | | 3.2t=8 | | 6-7g=5-5g | | 5m^2+5m-60=0 | | -2y^2+6y+20=0 | | 6(4w+4)=8(w+7) | | c^2-15c+54=0 | | a^2-11a+28=10 | | B^2+3b+14=12 | | n^2-60=-4n | | 7x+14+4x+3=90 | | 36/x+2=60/49 | | 6x^2=4704 | | 6x-2=5x+25 | | 4y+3y+12=117 | | 6x-2+4x+2=90 | | 4+3y+12=117 | | 23-7r=3r+8 | | 19-3r=2r+4 | | 3y+12+4y=117 | | (5w-4)+46=180 | | (3z)+(z+2)=90 | | Y=-5x15 | | y=3400(2.5)^5 | | 15=k5^2 | | (2y-3)+73=180 |